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Abstract

Particle damping is a passive vibration control technique where multiple auxiliary masses are placed in a
cavity attached to a vibrating structure. The behavior of the particle damper is highly non-linear and energy
dissipation, or damping, is derived from a combination of loss mechanisms. These loss mechanisms involve
complex physical processes and cannot be analyzed reliably using current models. As a result, previous
particle damper designs have been based on trial-and-error experimentation. This paper presents a
mathematical model that allows particle damper designs to be evaluated analytically. The model utilizes the
particle dynamics method and captures the complex physics involved in particle damping, including
frictional contact interactions and energy dissipation due to viscoelasticity of the particle material. Model
predictions are shown to compare well with test data.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Active and passive damping techniques are common methods of attenuating the resonant
vibrations excited in a structure. Active damping techniques are not applicable under all
circumstances due, for example, to power requirements, cost, environment, etc. Under such
circumstances, passive damping techniques are a viable alternative. Various forms of passive
damping exist, including viscous damping, viscoelastic damping, friction damping, and impact
damping. Viscous and viscoelastic damping usually have a relatively strong dependence on
temperature. Friction dampers, while applicable over wide temperature ranges, may degrade with
wear. Due to these limitations, attention has been focused on impact dampers, particularly for
application in cryogenic environments or at elevated temperatures.
Particle damping technology is a derivative of impact damping with several advantages. The

literature typically distinguishes particle damping from impact damping based on the number and
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sizes of the auxiliary masses (or particles) in a cavity. As shown in the idealized single-degree-of-
freedom system in Fig. 1, impact damping usually refers to only a single (somewhat larger)
auxiliary mass in a cavity, whereas particle damping is used to imply multiple auxiliary masses of
small size in a cavity.
Particle dampers significantly reduce the noise and impact forces generated by an impact

damper and are less sensitive to changes in the cavity dimensions or excitation amplitude. Studies
conducted over recent years have demonstrated the effectiveness and potential application of
particle dampers to reduce vibration in a space shuttle main engine liquid oxygen inlet tee [1] and
to attenuate the resonant vibrations of antennae [2]. In recent years, a tennis racquet
incorporating particle damping has even been introduced [3]. The behavior of particle dampers
is highly non-linear with energy dissipation, or damping, derived from a combination of loss
mechanisms. These loss mechanisms involve complex physical processes and cannot be analyzed
reliably using current models. As a result, previous particle damper designs have been based on
trial-and-error experimentation. A mathematical model has been developed which enables particle
damper designs to be evaluated analytically. The model utilizes the particle dynamics method and
captures the complex physics involved in particle damping.

2. Model development

The granular material in particle dampers is unique in that the material can display behavior
similar to a solid, liquid, or gas, depending on the amount of energy contained in the material.
Various techniques of modelling granular materials, including the particle dynamics method, have
been proposed. The particle dynamics method is a method similar to that used to study molecular
dynamics, where individual particles are modelled and their motions tracked in time. The
procedure is an explicit process with sufficiently small time steps taken such that during a single
time step, disturbances cannot propagate from any particle further than its immediate neighbors.
As a result, at any given time, the resultant forces on any particle are determined exclusively by its
interaction with the particles with which it is in contact. This feature makes it possible to follow
the non-linear interaction of a large number of particles without excessive memory or the need for
an iterative procedure.
The utility of the particle dynamics method is based on the ability to simulate contact

interactions using a small number of parameters that capture the most important contact
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Fig. 1. Idealized single-degree-of-freedom system with (a) impact damper and (b) particle damper.
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properties. Interaction forces between the individual particles and the cavity walls are calculated
based on force–displacement relations. Thus, one of the critical aspects for developing an accurate
mathematical model is the selection of appropriate force–displacement relations to account for
the forces created due to particle–particle and particle–cavity impacts.
In the mathematical model, it is assumed that the particle dampers consist of spherical particles

of a single material. Consider a typical impact of two spherical particles, i and j; with radii Ri and
Rj; with the particle centers separated by a distance, dij ; as shown in Fig. 2. These two particles
interact if their approach, a; is positive. The approach can be defined as

a ¼ ðRi þ RjÞ � dij: ð1Þ

In this case, the colliding spheres are subject to the contact force:

~FF ¼ FN �~nnN þ FS �~nnS; ð2Þ

where FN and FS are the normal and shear forces and ~nnN and ~nnS are the unit vectors in the
normal and shear directions, respectively, for a given sphere. The opposing sphere experiences
equal forces in the opposite direction.
For purely elastic contacts, expressions for the normal force can be found from Hertz’s theory

of elastic contact [4,5]. For the case of two contacting spheres with identical properties, a circular
contact area with radius, a; results. Hertz’s expression for the normal force becomes

FN ¼
2

3R

E

ð1� u2Þ
a3; ð3Þ
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Fig. 2. Typical particle–particle impact parameters

S.E. Olson / Journal of Sound and Vibration 264 (2003) 1155–1166 1157



where

R ¼
ðRiRjÞ

ðRi þ RjÞ
ð4Þ

and E and u are the elastic modulus and the Poisson ratio of the spheres, respectively. The
approach and contact circle radius are related as

a ¼
a2

R
: ð5Þ

Hertz’s expression is for two contacting spheres, but also holds for two impacting spheres
provided that the duration of the collision is long compared with the first fundamental mode of
vibration in the spheres.
Typically, particle–particle impacts are not purely elastic and energy is dissipated during the

impact event. For accurate damping predictions, it is important to incorporate this dissipation
into the model. The enduring types of contacts which occur in the particle damper preclude the
use of a coefficient of restitution or similar parameter. However, coefficient of restitution studies
have demonstrated that energy is dissipated due to the viscoelastic behavior of the sphere material
[6]. A three-parameter, generalized Maxwell model is used to represent the viscoelastic material,
such that the relaxation function, CðtÞ; takes the form

CðtÞ ¼ E0 þ E1e
�t=t1 : ð6Þ

Earlier work [6] indicates that, for hard metals and plastics, the dissipation due to the deviatoric
and dilatational strains are of similar magnitudes. As a result, the relaxation function is not
broken into separate deviatoric and dilatational components or, equivalently, it is assumed that
the Poisson ratio remains constant.
Ideally, the dissipative portion of the normal force would be expressed in terms of a viscoelastic

formulation of Hertz’s theory. Lee and Radok [7] have shown that, as long as the contact area is
increasing, a simple relation for the normal force can be derived by replacing the elastic modulus
in Hertz’s relation (Eq. (3)) with the relaxation function for the sphere material. Substituting the
relaxation function into Hertz’s relation and recognizing that the contact radius is also a function
of time, the total normal force (i.e., the normal force due to the combined elastic and dissipative
components) at any time can be expressed as

FN tð Þ ¼
2

3R

1

1� u2ð Þ

Z t

0

C t � t0
� � d

dt0
a t0
� �3

dt0: ð7Þ

Substituting the relation in Eq. (5) for the contact radius, and the relation in Eq. (6) for the
relaxation function yields

FNðtÞ ¼
R1=2

ð1� u2Þ

Z t

0

Xn

i¼0

Eie
�ðt�t0Þ=tiaðt0Þ1=2 ’aðt0Þ dt0; where

1

t0
¼ 0: ð8Þ

For greater utility, it would be beneficial to express Eq. (8) in incremental form such that state
variables can be used to describe the loading at any time. By considering the individual
contributions of each of the viscoelastic terms to the total normal force, the total force at any time
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can be expressed as a summation of terms:

FNðtÞ ¼
X1
i¼0

FN
i ðtÞ: ð10Þ

With further rearrangement, and using the midpoint rule to evaluate the integral in Eq. (8), the
following pair of incremental equations can be derived:

for i ¼ 0 : FN
0 ðt þ DtÞ ¼ FN

0 ðtÞ þ
R1=2

ð1� u2Þ
E0aðt þ Dt=2Þ1=2 ’aðt þ Dt=2ÞDt; ð11Þ

for i ¼ 1 : FN
1 ðt þ DtÞ ¼ FN

1 ðtÞe�Dt=t1 þ
R1=2

ð1� u2Þ
E1e

�Dt=2t1aðt þ Dt=2Þ1=2 ’aðt þ Dt=2ÞDt: ð12Þ

The resulting relations are valid when the contact area is increasing, but break down late in the
unloading due to negative (tensile) contact pressures which are predicted within the contact area.
However, particle dampers typically contain metallic, ceramic, or hard plastic particles. For the
relatively low levels of viscoelasticity in such particles, it is reasonable to impose the constraint
that the total contact force becomes zero when a negative force is predicted. Note that these
relations capture both the elastic and dissipative portions of the normal force and simplify to an
incremental form of Hertz’s relation when elastic properties are used.
In addition to normal forces, shear forces can be created when a particle slides along another

particle or along the cavity walls, or when oblique impacts occur between individual particles or
between particles and the cavity walls. Both slipping and non-slipping contact can occur. Of
particular interest is the accurate representation of slipping contacts, as damping is created due to
the dissipation of the heat generated by friction. When friction is introduced, the normal and
shear forces interact. However, this interaction is generally small and it is typically assumed that
the normal and shear forces are independent of each other [8]. This assumption is made in the
present particle damper model.
The shear forces can be roughly divided into two classes of contact depending on the duration

of the contact. The enduring type of contacts seen as a particle slides along another particle or
along the cavity walls typically lasts significantly longer in time than the nearly instantaneous type
of contacts seen during oblique impacts between individual particles or between particles and the
cavity walls. As a result, the enduring contacts can have a much more significant effect on the
overall damping than the oblique impacts, and it is important that the model accurately capture
these effects.
For enduring contacts, the shear forces can be reasonably represented using Amonton’s law of

sliding friction (Coulomb friction) [8]:

FS ¼ �sgnðvt
relÞm FN

�� ��; ð13Þ

where m represents the particle–particle friction coefficient and vt
rel is the relative tangential

velocity. This relation suffers from two potential drawbacks: (1) when the slip rate is small, the
shear force can rapidly change directions and create oscillations; and, (2) the relation is unable to
capture static friction. However, the global motion of the system to be damped will likely prevent
large oscillations in the shear force. In addition, static friction is not a concern since relative
particle motion must occur for the particle damper to function. A single coefficient of friction is
given, and it is assumed that particle motion occurs or that the static coefficient of friction is zero.
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The Coulomb friction model also is used to account for the forces created due to the nearly
instantaneous type of contacts seen during oblique impacts. Detailed finite element analyses show
that this model generally performs well for higher angles of incidence (glancing impacts), but
becomes less accurate at lower angles of incidence (closer to normal). However, in the particle
damper model, it is more critical to accurately represent the enduring type of sliding contacts since
these contacts generally last for a longer time and can have a more significant effect on the
damping. Future enhancements to the particle damper model may include a more accurate
representation of the shear forces generated during oblique impacts.
In addition to particle–particle impacts, particle–cavity impacts also occur and appropriate

force–displacement relations are required. The particle–cavity force–displacement relations can be
formulated by modifying the particle–particle relations to account for the material properties of
the cavity and the local curvature. For simplicity, it has been assumed that the cavity walls are flat
and rigid. Particle–cavity relations for flat cavity walls are derived from the particle–particle
relations by assuming the radius of curvature for the cavity walls goes to infinity. Under the
assumption of rigid walls, the effective modulus simply becomes the particle modulus.
The particle damper model has been implemented within X3D [9], an explicit finite element

code developed to predict high-velocity impact events. The code contains various contact
algorithms and bookkeeping routines and provides an appropriate framework for simulating
particle damping through the use of the particle dynamics method. Particle–particle and particle–
cavity contacts are resolved using the force–displacement relations discussed in the preceding
paragraphs. Contact state variables are created when any contact event occurs, and are stored and
updated throughout the course of that particular contact. Separate contact detection/resolution
routines are used for particle–particle and particle–cavity contacts.

3. Application

To demonstrate and validate the particle damper model, testing and analysis of a cantilevered
aluminum beam were performed. The beam was tested undamped and with various impact and
particle dampers attached. The particle damper model was used to predict the behavior of the
beam under various conditions.
The first flexural mode of a cantilevered aluminum beam was used for the laboratory testing.

The beam was 304.8mm in length, 38.1mm wide, and 4.45mm thick. The beam was rigidly fixed
at the root and had a first flexural mode of slightly less than 40Hz. The beam was excited near the
root through a stinger attached to an electromagnetic shaker. Testing was performed with
excitation signals of 200mV RMS and 400mV RMS input to the shaker. The excitation signal
was held constant and, as a result, the peak forces near resonance were considerably less than
those far from resonance. Accelerations were measured at the beam tip, with beam tip
displacements calculated based on the assumption of true sinusoidal response.
Laboratory testing was performed on the undamped beam, on beams with added mass, and on

beams damped with impact and particle dampers containing stainless steel spheres. The impact
and particle damper cavities were constructed from square acrylic tubing with aluminum end caps
epoxied to the tubing to enclose the cavities. For these tests, all of the impact and particle damper
cavities were 9.45mm wide, 9.45mm high, and 6.68mm long. Testing was performed on an
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impact damper containing a single 6.35mm diameter stainless steel sphere and on particle
dampers containing 64 stainless steel spheres of 1.59mm diameter and 512 stainless steel spheres
of 0.79mm diameter. These configurations were selected such that the total particle mass in each
case was identical, eliminating any effects due solely to added mass.
Analytically, the beam used for the laboratory testing was modelled as a simple mass–spring–

dashpot system as shown in Fig. 3. The beam was modelled as a lumped mass (at the master cavity
node) attached to a damped spring-to-ground element. The equivalent mass and spring stiffness
were chosen to simulate the first flexural mode of the undamped beam. The model captures the
behavior at the beam tip; so initial estimates for the analytical drive force were based on the tip
force equivalent to the measured force input near the root of the beam. Initial damping estimates
were based on the measured loss factor from laboratory testing. The excitation force and damping
were adjusted so that the predicted response of the undamped beam from the analytical
simulations matched the undamped response measured experimentally. Thus, the analytical
model was tuned for the undamped response. Subsequent damped analyses utilized the tuned
model parameters. Unlike the laboratory testing, where the excitation signal to the shaker was
held constant but the excitation force varied near resonance, the excitation force in the analyses
was held constant for a given excitation level.
For damped simulations, the cavity was modelled using contact surfaces defined by nodes

linked to the master cavity node. Particles were tracked using a node at the center of each particle.
The particles initially were given a random distribution within the cavity and a gravity load was
included to ensure that the particles pack on the bottom of the cavity. The mass of the particles
was included based on the number of particles and the radius and density of each particle. Any
additional mass due to the cavity was added to the equivalent mass of the undamped beam.
For the damper analyses shown here, the particles were given viscoelastic material properties

with E0 ¼ 189:6GPa, E1 ¼ 34:5GPa, and t1 ¼2.0ms. These properties correspond to a maximum
equivalent loss factor of 0.083 and an elastic modulus of 206.8GPa at the frequency of the
maximum loss factor. These properties were chosen based on restitution studies of a single sphere
impacting a rigid plate. A coefficient of friction was given for the particles to account for the
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Fig. 3. Analytical model used to simulate particle dampers.
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frictional interactions between the individual particles or the particles and the cavity walls. A
coefficient of friction of 0.30 was used in the analyses.
Fixed time steps were used in the simulations. The particle dynamics method requires that

sufficiently small time steps be taken, so that during a single time step, disturbances cannot
propagate from any particle further than its immediate neighbors. For these simulations, a time
step of 0.5 ms was used. The simulations also must be performed to sufficiently long times, so that
the steady state displacement of the cantilever beam can be determined. These simulations were
run to a simulated time of 15.0 s, requiring solutions propagated through 30 million increments.
Separate solutions were performed at each frequency of interest.

4. Results

Various simulations were performed corresponding to cases which were tested. Measurements
were made on the undamped beam, the beam with an added mass equal to the mass of the
dampers, and on various damper configurations (of the same total particle mass) containing one
6.35mm diameter particle, 64, 1.59mm diameter particles, and 512, 0.79mm diameter particles.
Fig. 4 shows experimental and analytical beam tip displacements at various frequencies for the
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Fig. 4. Beam tip displacements under 200mV RMS excitation force: undamped experiment, K; undamped analysis, ;

added mass experiment, ’; added mass analysis, ; one 6.35mm diameter steel sphere experiment, m; one 6.35mm

diameter steel sphere analysis, .
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undamped, added mass, and single-particle configurations under a force equivalent to a 200mV
RMS excitation signal to the shaker. Fig. 5 shows results for the various damped cases under a
force equivalent to a 200mV RMS excitation signal to the shaker. Similar results corresponding
to a 400mV RMS excitation signal to the shaker are shown in Figs. 6 and 7.
For some of the experimental results, two sets of data are given for the same configuration. In

each case, the first set of results corresponds to data taken with the excitation frequency increasing
during testing and the second set with the excitation frequency decreasing. The accelerations
acting on the particles must become sufficiently large to overcome the forces of static friction or
other cohesive forces. Once the friction or cohesive forces are overcome, the particles remain in
motion until the excitation is removed. In the particle damper model, it is assumed that relative
particle motion occurs. Therefore, the model will not capture any effects due to static friction or
cohesive forces.
An interesting result is observed in the experimental data for the damper with 512 particles. At

200mV RMS excitation, very little attenuation is seen. However, at 400mV RMS excitation,
considerable attenuation is observed once the displacements reach a certain level (whether the
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Fig. 5. Damped tip displacements under 200mV RMS excitation force: one 6.35mm diameter steel sphere experiment,

K; one 6.35mm diameter steel sphere analysis, ; 64, 1.59mm diameter steel spheres experiment with increasing

frequency, m; 64, 1.59mm diameter steel spheres experiment with decreasing frequency, X; 64, 1.59mm diameter steel

spheres analysis, ; 512, 0.79mm diameter steel spheres experiment,’; 512, 0.79mm diameter steel spheres analysis, .
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excitation frequency is increasing or decreasing). During laboratory testing, it was observed that
there may be cohesive forces between the particles due to static electric charges or oil on the
particles which influence the results.
In general, the particle damper model predicts the correct trends. For example, the model

predicts little attenuation for the single-particle dampers, but considerably more attenuation for
multiple-particle dampers containing 64 and 512 particles. The model also captures the
experimental trend of optimum damping at a specific number of particles with less attenuation
when either a lesser or a greater number of particles is used. This trend is evident in the increased
attenuation observed when the number of particles is increased from a single particle to 64
particles, and the decreased attenuation observed when the number of particles is further
increased to 512 particles. The model does tend to overpredict the attenuation, particularly for
multiple-particle dampers. A portion of this discrepancy between the experimental and model
data may be a result of controlling the shaker excitation signal for the laboratory testing, and
controlling the actual excitation force in the analytical simulations. The model also does not
capture any effects due to static friction or cohesive forces between the particles.
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Fig. 6. Beam tip displacements under 400mV RMS excitation force: undamped experiment, K; undamped analysis, ;

added mass experiment, ’; added mass analysis, ; one 6.35mm diameter steel sphere experiment, m; one 6.35mm

diameter steel sphere analysis, .
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5. Conclusions

A mathematical model has been developed which allows particle damper designs to be
evaluated analytically. The model is based on the particle dynamics method and adequately
captures the complex physical interactions that occur in particle dampers. Application of the
model has been demonstrated by simulating laboratory testing of a cantilevered beam. Model
predictions generally compare well with test results. It is anticipated that future enhancements to
the model will further improve the correlation.
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Fig. 7. Damped tip displacements under 400mV RMS excitation force: one 6.35mm diameter steel sphere experiment,

K; one 6.35mm diameter steel sphere analysis, ; 64, 1.59mm diameter steel spheres experiment with increasing

frequency, m; 64, 1.59mm diameter steel spheres experiment with decreasing frequency, X; 64, 1.59mm diameter steel

spheres analysis, ; 512, 0.79mm diameter steel spheres experiment with increasing frequency, ’; 512, 0.79mm

diameter steel spheres experiment with decreasing frequency, &; 512, 0.79mm diameter steel spheres analysis, .
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